

Presentation to the 26th Annual Software Engineering Workshop NASA/Goddard Space Flight Center (GSFC) Software Engineering Laboratory (SEL) and the IEEE Computer Society

Martin S. Feather, **Burton Sigal**, Steven L.Cornford Jet Propulsion Laboratory California Institute of Technology

> Patrick Hutchinson Wofford College, Spartanburg, SC

For further info contact:Martin.S.Feather@Jpl.Nasa.Gov http://eis.jpl.nasa.gov/~mfeather

Software assurance is the planned and systematic set of activities that ensures that software processes and products conform to requirements, standards, and procedures.

Software Assurance Activities (inspections, tests, reviews,...)

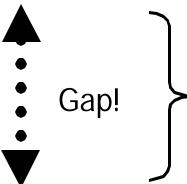
- Benefit: reduce risk

- Cost: time, \$

Limited resources - must select activities judiciously

To do so, need means to *quantitatively* assess the cost/benefit of assurance activities applied to specific projects. This will:

- determine best use of limited resources
- identify alternatives (e.g., requirements to discard)
- be persuasive to developers and managers


Cost/Benefit Reasoning for a *Suite* of Software Assurance Activities

Cost/benefit data & reasoning has been applied to:

Individual activities, e.g., Regression testing [Graves et al, 1998].

Pairwise comparisons, e.g., "Peer reviews are more effective than function testing for faults of omission and incorrect specification" [Basili & Boehm, 2000].

NEED: quantitative cost/benefit calculation for suite of assurance activities applied to a specific project

Lifecycle process improvement, e.g., Quality, productivity and estimation gains from CMM-like process improvement [McGarry et al, 1998].

ARRT is inspired by, and based on JPLer Steve Cornford's Defect Detection and Prevention (DDP) process and tool

DDP *process* [Cornford et al, 2001] supported by a custom *tool* [Feather et al, 2000] for *quantitative* risk management.

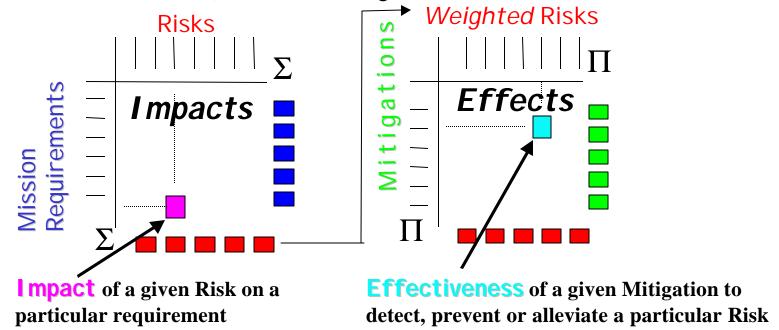
ARRT is DDP augmented as follows:

- pre-populated with software assurance effectiveness data
- can be used in conjunction with NASA Glenn's Ask Pete tool
- has a sophisticated cost/benefit model

ARRT inherits DDP's model of risk mitigation

DDP utilizes three trees of key concepts:

Requirements (what you want)


Risks (what can get in the way of requirements)

Mitigations (what can mitigate risk)

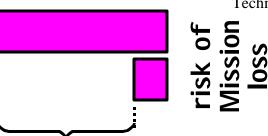
and two matrices that connect those concepts:

Impacts (how much Requirement loss is caused by a Risk)

Effectivenesses (how much a mitigation reduces a Risk)

ARRT's Quantitative Cost/Benefit Model

Risk mitigations subdivided into


Preventions – prevent problems from appearing in the first place e.g., training programmers → fewer coding errors cost = performing prevention benefit = reduction of risk likelihood

Detections – detect problems so that they can be corrected
 e.g., unit testing → detects internal coding errors
 cost = performing detection +
 performing the repair (cost depends on when!)
 benefit = reduction of risk likelihood

Alleviations – applied to decrease the severity of problems
e.g., robust coding → tolerant of out-of-bound input values
cost = performing alleviation
benefit = reduction of risk severity

Return On Investment of Assurance

Is it worth paying \$\$\$\$ to save this much risk?

Return On Investment (ROI) calculation

ROI = benefit of risk reduction / cost of assurance

Conservative basis for ROI: benefit = Mission cost * (Risk reduction due to Assurance)

• E.g., Mars Polar Lander + Mars Climate Orbiter missions cost = \$183,000,000

Aggressive basis for ROI: benefit =

(Value of attaining mission requirements) *

(Risk reduction due to Assurance)

- What is the value of discovering water on Mars?
- What is the value of returning a Mars sample to Earth?

ARRT's Quantitative Cost/Benefit Model

Cost/benefit computations in ARRT

- Automatic
- Handle suite of assurance activities
- Permit data to be changed if we know better than standard estimates
- Distinguish development phases (requirements, design, ...)
- Distinguish preventions, detections and alleviations
- Combine with underlying risk computation model

Software Estimation & Planning data: ARRT – Ask Pete collaboration

Ask Pete runs to gather project characteristics, make first cut at suggested selection of risk mitigations.

Mitigation selection passed to **ARRT**

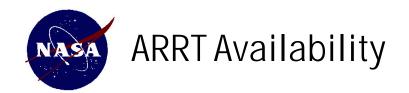
ARRT runs to allow user to assess risk, provide costs, **customize to project** (add/remove risks, refine effect values, etc.), tune selection accordingly.

Revised mitigation selection returned to ASk Pete

Ask Pete runs to generate final reports

see companion presentation in this workshop

Tim Kurtz, ε
Tim.Kurtz@grc.nasa.gov
SAIC/NASA Glenn Research
Center
http://tkurtz.grc.nasa.gov/pete
Principal Investigator ε Martha
Wetherholt


TOO MUCH - use ARRT to plan how to reduce risk in a cost-effective manner.

TOO LITTLE - use ARRT to plan how to accept more risk in exchange for reduced cost and schedule, more functionality, etc.

JUST RIGHT - use ARRT to maintain a desired risk profile through the lifetime of the project.

DON'T KNOW - use ARRT to assess risk status.

"Risk as a Resource" - Dr. Michael Greenfield [Greenfield, 1998]

DDP:

.gov domains – available for immediate download others - must apply for license

ARRT:

currently a variant compilation of DDP in process of incorporating as a choice within DDP's opening screen

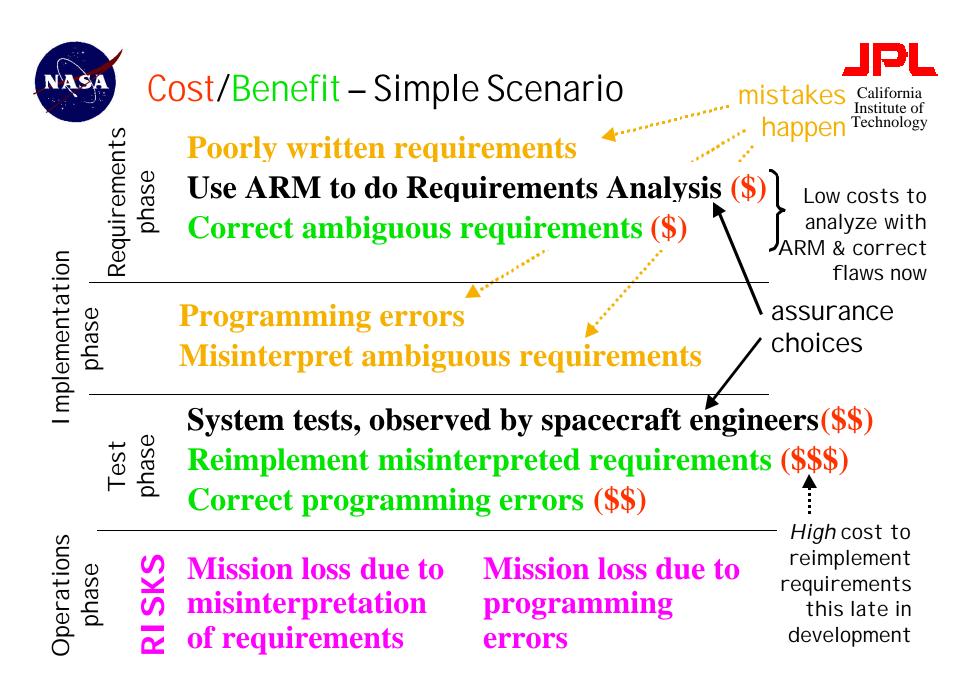
go to:

http://eis.jpl.nasa.gov/~mfeather

& look for:

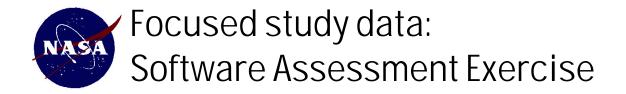
"Risk assessment and planning tools: <u>DDP & ARRT</u>"

- [Basili & Boehm, 2000] V. Basili & B.Boehm "CeBaSE: The Center for Empirically based Software Engineering" NASA Goddard 25th Annual Software Engineering Workshop, 2000.
- [Cornford et al, 2001] S.L. Cornford, M.S. Feather & K.A. Hicks. "DDP A tool for life-cycle risk management", *I EEE Aerospace Conference*, Big Sky, Montana, Mar 2001, pp. 441-451.
- [Feather et al, 2000] M.S. Feather, S.L. Cornford & M. Gibbel. "Scalable Mechanisms for Requirements Interaction Management", 4th I EEE International Conference on Requirements Engineering, Schaumburg, Illinois: 119-129, June 2000.



- [Graves et al, 1998] T. Graves, M. Harrold, J. Kim, A. Porter and G. Rothermel. "An Empirical Study of Regression Test Selection Techniques". 20th Int. Conference on Software Engineering, 1998, pp. 267-273.
- [Greenfield, 1998] M.A. Greenfield "Risk Management 'Risk As A Resource' " http://www.hq.nasa.gov/office/codeq/risk/
- [Hoh & Roy, 2001] H. In & S. Roy "Visualization I ssues for Software Requirements Negotiation" 25th Annual International Computer Software and Applications Conference, Chicago, IL, Oct. 2001.
- [McGarry et al, 1998] F. McGarry, S. Burke & B. Decker. Measuring the impacts individual process maturity attributes have on software products., 5th International Software Metrics Symposium, 1998, pp. 52-60

Backup Slides

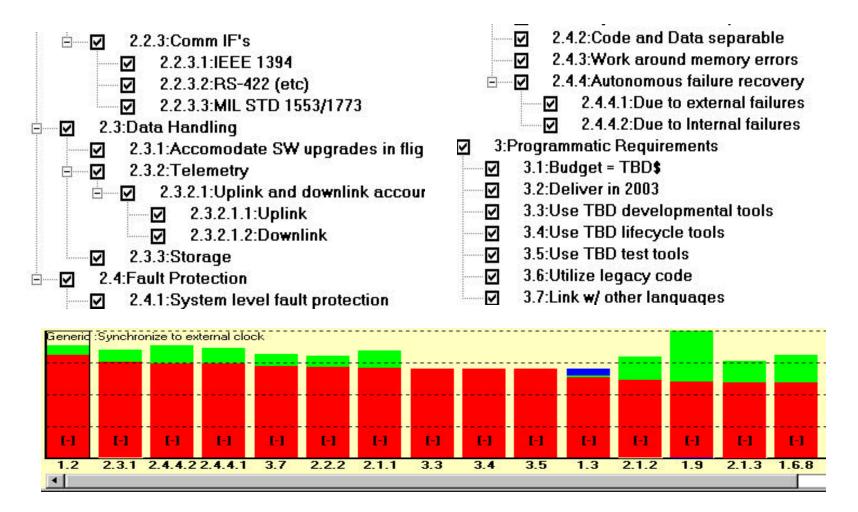

NASA

Cost/Benefit - Simple Scenario (cont.)

risk Technology **Use ARM to do Requirements Inspection (\$)** decreases Correct ambiguous requirements (\$) - System tests, observed by spacecraft engineers (\$\$) Reimplement misinterpreted requirements (-/\$\$\$) **Correct programming errors (\$\$)** 0 + 0 + 0 + 0 + 0 = 00 + 0 + \$\$ + \$\$\$ + \$\$ = \$\$\$\$\$\$\$ + \$ + 0 + 0 + 0 = \$\$ $$ + $ + $ + $ + 0_{-} + $ = $$$

Lowest risk, but NOT highest cost - savings from correcting problems early

Steve Cornford, JPL + others


- Focus: code generation by [product name deliberately hidden]
 - Flight code of modest experiment
 - Flight code for future missions
- 15+ experts in 4 x 4-hour sessions, Sept 2000
 - [product] experts
 - Mission experts
 - Software experts (SQA, coders, ...)
- Large information set
 - 47 Requirements (unprioritized)
 - 76 Risks (near-term mission-specific & futuristic)
 - 303 Mitigations (pre-populated with large set)
 - 107 Impacts
 - 223 Effects

Software Assessment Exercise – extract

Portions of the Requirements tree and bar chart

Software Engineering Community Data

- Risks: Software Risk Taxonomy (SEI)
- Mitigations: two datasets:
 - JPL's Risk Balance Profile of SQA actions
 - Assurance activities from Ask Pete (NASA Glenn tool)
- Effects: cross-linkings of the above (Jim Kiper)
 - Expert's best estimates* of yes/no (Prof. J. Kiper)
 - Experts' 1000+ best estimates* of quantified effectiveness (Prof. J. Kiper & J. Eddingfield)

Note: Requirements are project specific

*ARRT needs YOUR data!

ARRT - Tim Menzies collaboration in progress

Prof. Tim Menzies, U. British Columbia

- Optimization automated search for (near) optimal mitigations suites
 - Least risk for given cost
 - Least cost for given risk
- Sensitivity analysis
 - On which data values do the results hinge?
 - Scrutinize these values further
 - Identify points of leverage (e.g., problematic requirements; make-or-break decisions)
- Retain human involvement
- Extend reasoning to more complex data
 - Interactions: mitigations that induce risk (e.g., code changes to correct one bug may introduce other bugs)
 - Ranges / distributions of values (e.g., [0.1 0.3])

tim@menzies.com

ARRT Heritage & Contributors

ARRT is inspired by, and based on JPLer Steve Cornford's Defect Detection and Prevention (DDP) and JPLer Tim Larson's Risk Balancing Profiles (RBP).

contributors (JPL)

John Kelly
Burt Sigal
James Eddingfield
Steve Cornford
Phil Daggett
Julia Dunphy

contributors

Jim Kiper (U. Miami, Ohio)
William Evanco (Drexel)
Steve Fickas (U. Oregon)
Martha Wetherholt (NASA Glenn)
Richard Hutchinson (Wofford, SC)

primary collaborators

Tim Menzies (U. British Columbia) Tim Kurtz (NASA Glenn) Hoh In (Texas A&M)

funding, management & guidance

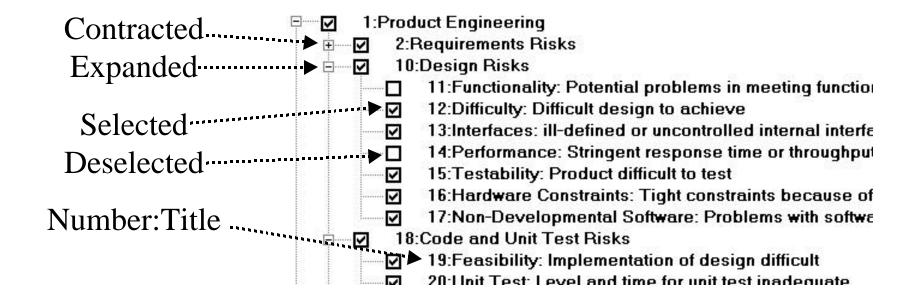
Roger Klemm

NASA Code Q, NASA Goddard IV&V Facility Siamak Yassini, Ken McGill, Marcus Fisher

ARRT/DDP Computations & Visualizations

Information is derived from user-provided data via built-in computations, e.g.,

 FM's cumulative impact = FM.Likelihood * (Σ (R ∈ Requirements) R.Weight * Impact(R, FM))


Information presented via cogent visualizations

- Bar charts
- Risk Region chart
- Stem-and-leaf plots
- Detailed view of properties of individual element

Taxonomies of Software Requirements / Risks / Risk Mitigations

Autonumbering: *linear* 1,2,... or *tree* 1, 1.1, 1.2, 1.2.1, ...

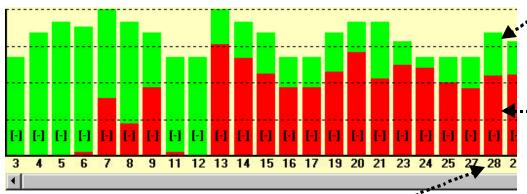
Effects (Mitigation x Risk)

			•		****			
		FMs	[-]Product Engineering [-]Requiremen Risks					
		FMs						
		FMs	Stabilit	Compli	Clarity:	Validity	Feasib	Pre
PACTs	PACTs	FoM\R	0.5	0.5	0.5	0.5	0.5	0.5
	Authori	7.95	0.1	0.1	0.1	0.1	0.1	0.3
	Identify	2.3		S 21	30			
	Mainta	0		(6 10		8	ii.	
	Softwa	2.65						
	Implem	1.85	0.9	0.3 🗲	0.9	0.9	0.3	0.3
	Manag	0.15				*****	****	
	Docum	1.65	0.3	0.9	0.9	0.1	0.3	0.3
	Peer	28	nφ	N 9	ηq	nq	nq	ΠQ

numbers
supplied by
experts and/or
based on
accumulated
metrics

Risk reduced by Mitigation

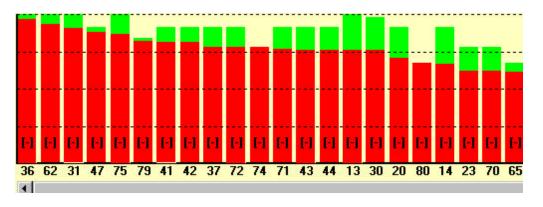
Impacts (Requirement x Risk): proportion of Requirement loss if Risk occurs



ARRT/DDP Visualizations - Bar Charts

Risks bar chart

Unsorted – order matches leaf elements in Risk tree

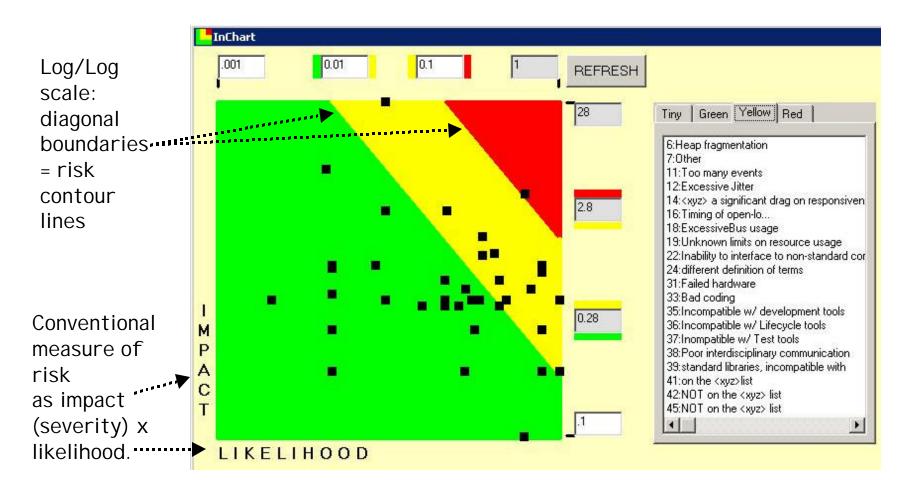


Item number in tree .

Green: of this Risk's total Impact on Requirements, that *saved* by Mitigations

Red: of this Risks's total Impact on Requirements, that *remaining* despite Mitigations

Sorted – in decreasing order of remaining risk


Requirements bar chart – how much each is impacted

Mitigations bar chart – how much impact each is saving

User defines risk levels demarking red/yellow/green/(tiny) risk regions



ARRT/DDP Visualizations – stem-and-leaf(*) charts

Compact visualization of DDP's sparse matrices

(*) Tufte attributes these to John W. Tukey, "Some Graphical and Semigraphic Displays" Their usage was introduced into RBP by D. Howard, extended further by us in DDP.